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In many practical communication systems, the overall additive noise
can be appropriately modelled as the Gaussian noise plus the sym-
metric a-stable (SaS) distributed interference. A closed-form prob-
ability density function of the overall noise is derived to facilitate
performance evaluation and system optimisation.

Introduction: Besides Gaussian noise, the impulsive interference mod-
elled as symmetric a-stable (SaS) distribution is often encountered in
many practical communication systems. Examples include multiple
access systems where impulsive multiple-access interference arises [1]
and cognitive networks in which a large amount of spatially Poisson-
distributed cognitive radios are simultaneously transmitted [2, 3]. In
this Letter, we consider the system affected by the Gaussian noise
plus the SaS interference, and derive a closed-form probability
density function (PDF) of the overall noise to facilitate performance
evaluation and system optimisation. To this end, we first resort to the
bi-parameter Cauchy-Gaussian mixture (BCGM) model [4] which pro-
vides a concise yet accurate approximation to the SaS PDF. Then we
derive a closed-form PDF for the overall noise with a [ [1, 2].

Additive model of overall noise: We consider the communication
systems disturbed by both the Gaussian noise and SaS interference.
The overall noise is mathematically written as

n = ng + na (1)

where ng is the Gaussian noise component with variance of gg ¼ s2
g and

na denotes the SaS interference component. Specifically, na can be
described by the characteristic function [5]

cna (u) = exp(−g|u|a) (2)

where a [ (0, 2] is the characteristic exponent and g ¼ sa is the dis-
persion for some s . 0. A well-known challenge for SaS is that its
PDF is not analytical except for two special cases of Gaussian (a ¼
2) and Cauchy (a ¼ 1) distributions.

Analytical PDF of overall noise: From (1), the PDF of n can be com-
puted as

fn(x) = f2,gg
(x) ⊗ fa,g(x) (3)

where ⊗ denotes the convolution operation, and f2,gg
(x) and fa,g(x) rep-

resent the PDFs of ng and na, respectively. Since Gaussian density
f2,gg

(x) is well known as
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we next need to obtain an analytical fa,g(x). From the BCGM model, a
very simple yet accurate approximation for the SaS PDF is given by [4],

fa,g(x) = (1 − 1)f2,g(x) + 1f1,g(x)

= 1 − 1
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where 1 [ [0, 1] is the mixture ratio, evaluated as

1 = 2G(−p/a) − aG(−r/2)
2aG(−p) − aG(−r/2) (6)

in which G( ) denotes the Gamma function and p ¼ 21/4 is used.
Substituting (4) and (5) into (3) yields the PDF of n as

fn(x) = (1 − 1)f2,gg
(x) ⊗ f2,g(x) + 1f2,gg

(x) ⊗ f1,g(x) (7)

Since f2,gg
(x) ⊗ f2,g(x) represents the density function of the sum of two

Gaussian random variables, it can be readily evaluated as

f2,gg
(x) ⊗ f2,g(x) =
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Moreover, f2,gg
(x) ⊗ f1,g(x) can be calculated as
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where [6, equation (7.4.13)] is applied in the last equality, and w( ) is the
Faddeeva function [6] with

w(x + jy) = exp[−(x + jy)2]erfc(y − jx) for real x and y . 0 (11)

where erfc( ) is the complex complementary error function [7].
Summarising the results in (8) and (10) finally yields the PDF of the
overall noise as
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Performance evaluation: To verify the proposed studies, we generate
two independent sample series of length 106: one is SaS series with
g ¼ 1 and the other is Gaussian series with sg ¼ 1. We then add
them to simulate the overall noise. Fig. 1 shows the analytical PDF
fn(x) and the empirical PDF femp(x), where a ¼ 1.5. As observed from
Fig. 1, the analytical PDF is close to the actual one, which verifies the
derived fn(x) in (12).
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Fig. 1 Analytical and empirical PDFs with a ¼ 1.5
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Fig. 2 KL divergence against a in range of [1, 2]

We then quantitatively characterise the closeness between the derived
analytical PDF fn(x) and the empirical PDF femp(x) from the Kullback-
Leibler (KL) divergence [8]

DKL(fn(x)‖femp(x)) =
∫1

−1

fn(x) log2

fx(x)
femp(x)

( )
dx (13)
No. 1



To numerically calculate the KL divergence, the integral range in (13) is
truncated into [2100, 100], and a step of 0.2 is employed to discretise
the integral. The result of KL divergence between the analytical and
empirical PDFs is indicated in Fig. 2, where a varies in [1, 2]. In
addition, we demonstrate the entropy of the empirical PDF in Fig. 3.
From Figs. 2 and 3, we observe that on average, the KL divergence is
about 1023 of the associated entropy, which further corroborates the
derived analytical PDF of the overall noise.

1.0 1.2 1.4 1.6 1.8 2.0
14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

18.0

18.5

19.0

α

en
tr

op
y 

of
 e

m
pi

ric
al

 P
D

F

Fig. 3 Entropy of empirical PDF against a [ [1, 2]

Conclusion: In this Letter, analytical PDFs of the overall noise have
been derived for the communication systems suffering from both
Gaussian noise and SaS-distributed interference. Numerical simulations
have illustrated the accuracy of the proposed analytical PDF. The authors
feel that the results presented in this Letter may help to alleviate the
simulation burdens and facilitate the optimisation for similar communi-
cation systems.
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